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Rigorous and Simplified Models for the Capacitance
of a Circularly Symmetric Via
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Abstract—An integral-equation method is presented for an-
alyzing the capacitance of circularly symmetric vias with thick
conductors and conical posts. From the numerical data, simple
expressions are derived which account for the effect of conductor
thickness and cone angle. Use of the approximate expressions
allows one to accurately determine via capacitance while using a
simpler thin-conductor straight-post via model.

Index Terms—Capacitance, numerical analysis, packaging.

I. INTRODUCTION

V IAS connect transmission lines residing on different
layers of a multilayered board, and hence, typically

consist of a conical post or cylinder that may or may not
pass through a hole in a ground plane. Most vias are not
straight cylinders as sometimes assumed, but are cone shaped
with a typical cone angle of about 30. The via cylinder or
cone often has flanges at both ends to facilitate connections
to microstrip traces. The via structure is usually embedded
within a multilayered dielectric, and it is not uncommon in
an integrated circuit for the conductor thickness to be on the
same order as the dielectric thickness. A typical via structure
is shown in Fig. 1. Vias are usually modeled as a combination
of lumped elements. The effect of vias on a circuit is mostly
capacitive, especially if the via crosses a ground (or power)
plane. At low frequencies, this capacitance can be neglected,
but at high frequencies the via capacitance must be taken
into account when designing an integrated circuit or multichip
module.

Previous investigations have determined the excess capac-
itance and inductance of a via connecting two lines above
the same ground plane [1] and the excess capacitance through
a ground plane in a homogeneous medium [2]. In [3], the
capacitance of a via through a thick ground plane is deter-
mined, and in [4] the analysis is extended to account for the
connecting traces. A finite-difference time-domain (FDTD)
method is used to determine a lumped-element via model
in [5], [6]. In [7], the via capacitance is determined from
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Fig. 1. The cross-sectional view of a conical via through a dielectric slab.

an integral-equation method whose Green’s function accounts
for the dielectric. In [8], [9], Laplace’s equation is solved by
separation of variables and domain decomposition to account
for a multilayered dielectric.

In this paper, we extend the integral-equation method em-
ployed in [7] to account for conductor thickness and the
conical shape of vias. In addition, simplified approximate
formulas for capacitance are developed from the numerical
data which account for conductor thickness and cone angle.
Use of these simplified formulas allows one to approximate the
conical post with a straight cylinder of predetermined radius,
thus enabling one to take advantage of more efficient tech-
niques such as those of [8], [9]. Regardless of the method, the
accurate modeling of thick conductors increases the number
of unknowns and, therefore, the computation time.

II. I NTEGRAL EQUATIONS

Assuming the via post and flanges are charged to a potential
of and the ground plane is held at zero potential, one readily
formulates the coupled integral equation [7]

(1)

where and are functions of the arc displacement,,
, and are the charge density on the central post and the

ground plane, respectively, and and are the contour of
the central cylinder and flanges and the contour of the ground
plane, respectively. Ideally, the contour of the ground plane
extends to infinity, but numerically the contour extends to a
radius where the charge density has sufficiently decayed so that
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it can be truncated with a negligible effect on the potential. A
radius of is usually sufficient. The Green’s function
( ) is the potential due to a ring of charge in the presence of
a dielectric slab, and is given by

(2)

where

(3)

and

if
otherwise.

(4)

The permittivity of (3) is the permittivity of the medium in
which the ring of charge resides, is the complete elliptic
integral of the first kind, and is

(5)

The function is defined as

(6)

(7)

The homogeneous part of the Green’s function outside of the
slab is given by

(8)

(9)

Fig. 2. The capacitance of a cylindrical via without a ground plane with
respect to lip thickness,t: The dimensions areacyl = 0:4 mm, bcyl = 0:6

mm, and2h = 0:8 mm.

Fig. 3. The capacitance of a cylindrical via through a ground plane with
respect to lip thickness,t. The dimensions areacyl = 0:4 mm, agrd = 0:6

mm, bcyl = 0:6 mm, and2h = 0:8 mm.

A pulse expansion and point-matching scheme is used to
convert the coupled integral equations to a matrix equation
[7], [10]. In [7], the singularity in the Green’s function when
the distance between the source and observation point tends
toward zero is handled by extracting the singularity and
analytically integrating it. The singularity subtraction method
derived in [7] is only valid as the observation point approaches
the source point along the lines or . In the present
analysis, integration over the logarithmic singularity in the
elliptic integral employs thelinlog quadrature rule developed
in [11]. Not only is this approach simpler to implement than
the singularity subtraction method, it allows one to integrate
over the singularity along any contour, including the cone
under consideration. In addition, the homogeneous part of the
Green’s function has a simple dependence onand . If the
contour of integration is completely in the- or -direction,
then considerable improvement in efficiency is obtained by
integrating the homogeneous part of the Green’s function ()
analytically.

III. RESULTS

The capacitance of a straight cylindrical via not passing
through a ground plane versus flange thickness is shown in
Fig. 2 for two different relative permittivities, and

In Fig. 3, the capacitance of a straight cylindrical
via passing through a ground plane is shown for the same
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Fig. 4. The capacitance of a conical via without a ground plane with respect
to cone angle�. The dimensions areacyl = 0:6 mm, bcyl = 0:2 mm+acyl,
and 2h = 1:0 mm.

permittivities. A straight cylindrical via has an angle of incline
of , therefore, we define .
For all cases shown, the flange radius is mm,

mm, and the dielectric thickness is
mm. For the geometries with a ground plane, the opening
has a radius of , and for the geometries without
a ground plane, the ground reference is at . The data
from the integral equation model is shown in the curves labeled
Numerical. In all the cases, the capacitance has a nearly linear
variation with flange thickness. Since the variation is linear, an
approximate formula can be obtained to relate via capacitance
and lip thickness.

The capacitance can be approximated by the formula
, where is the thickness of the connecting flanges

and is the capacitance of the via with vanishingly thin
flanges. The value of the slope is empirically obtained.
If the via does not pass through a ground plane, is
approximately

(10)

For a via passing through a ground plane, the value ofis
given by

(11)

In Figs. 2 and 3, the value of capacitance found from
is shown compared with those computed, which are

the curves labeledApprox.
In Fig. 4, the capacitance of a conical via without a ground

plane with respect to cone angle is shown for two different
permittivities and . The ground reference
for this case is located at infinity. The center radius of the
cylinder is held at mm, and the connecting
pads add an additional 0.2 mm to the lip radius . The
thickness of the dielectric is mm. The curves
labeled Numerical show the capacitance as determined by
the integral model. A common approximation of the conical
cylinder is a straight cylinder having the average radius

. This approximation is equivalent to
; thus, one can see the error of this approximation. A

better approximation is

(12)

Fig. 5. The capacitance of a conical via through a ground plane with respect
to cone angle,�. The dimensions areacyl = 0:6 mm, bcyl = 0:2 mm+acyl,
agrd = bcyl, and 2h = 1:0 mm.

and the capacitance of a straight via using the approximate
cylinder radius is shown by the curve labeledApprox. in Fig. 4.
The maximum error for the cases shown is 0.25%.

The capacitance of a conical via passing through a ground
plane is presented in Fig. 5 for the relative permittivities

and for comparison with the capacitance
shown in Fig. 4. The center radius of the cylinder is again
held at mm, and the lip radius is

mm. The ground plane is in the plane
and has an opening of radius . Again the curves
labeledNumericalshow the results from the exact model. The
presence of a ground plane complicates the problem since
either the flanges-to-ground capacitance or the cylinder-to-
ground capacitance could dominate. If the cylinder–ground
capacitance dominates, the radius approximation

(13)

works reasonably well. The via capacitance based on this ap-
proximation is shown in the curves labeledApprox. in Fig. 5.
One notes that as the cone angle decreases, the approximation
breaks down, which is due to the increasing importance of the
flange-to-ground capacitance.

IV. CONCLUSIONS

A method for determining the capacitance of conical vias
with thick conductors is presented. Since the via capacitance
displays a linear dependence on conductor thickness, a simple
empirical expression for capacitance can be found and is
presented. Use of the simple approximate expression allows
one to use a simpler thin conductor model which requires less
computational effort. For a via not passing through a ground
plane, the central processing unit (CPU) time was reduced
from 13.4 to 3.85 s by using the approximation in conjunction
with the thin conductor model. For conical vias, approximating
the conical central cylinder with a straight cylinder makes the
problem easier to model and works well, particularly if the via
does not pass through a ground plane.
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